Constraints on primordial black holes as constituents of dark matter based on OGLE observations of the LMC

Przemek Mróz

31 January 2024 Astronomical Observatory, University of Warsaw

Black holes as dark matter

Microlensing experiments have ruled out compact objects (primordial black holes, MACHOs, etc) in the mass range 10^{-10} – $10 M_{\odot}$ as a dominant component of dark matter

Black holes as dark matter

Microlensing experiments have ruled out compact objects (primordial black holes, MACHOs, etc) in the mass range 10^{-10} – $10 M_{\odot}$ as a dominant component of dark matter

 $t_{E} = 2 \text{ yr} \text{ for } M = 100 \text{ M}_{\odot}$ $t_{E} = 6 \text{ yr} \text{ for } M = 1000 \text{ M}_{\odot}$ $t_{E} = 20 \text{ yr} \text{ for } M = 10000 \text{ M}_{\odot}$

Black holes as dark matter

Microlensing experiments have ruled out compact objects (primordial black holes, MACHOs, etc) in the mass range 10^{-10} – $10 M_{\odot}$ as a dominant component of dark matter

$$t_{E} = 2 hr$$
 for M = 10⁻⁶ M _{\odot}

OGLE: Optical Gravitational Lensing Experiment

Milky Way

Magellanic System

Warsaw 1.3-m @ Las Campanas, Chile

- in operation since **1992**
- since 2010 as OGLE-IV (Udalski et al. 2015)
- over **20,000** microlensing detections
- over **100** exoplanets discovered

OGLE observations of the LMC

Surface density of stars $(\operatorname{arcmin}^{-2})$

	Δt (yr)	Area (deg²)	# stars (million)
OGLE-III & OGLE-IV	20	42	41
OGLE-IV only	11	280	34

Searches for microlensing events

- 75 million objects in the OGLE database
- 500-1100 epochs per each light curve
- detected **16** short-timescale events (t_E < 200 days)
- lenses located in the LMC itself and Milky Way disk

Searches for microlensing events

- 75 million objects in the OGLE database
- 500-1100 epochs per each light curve
- detected **16** short-timescale events (t_E < 200 days)
- lenses located in the LMC itself and Milky Way disk

Expected number of events

Limits on the PBH abundance

Assuming a monochromatic PBH mass function: f < 1.1% for M = 10 M_{\odot} f < 2.7% for M = 100 M_{\odot} f < 9.7% for M = 1000 M_{\odot} (95% confidence limits)

Planetary-mass PBHs

- Microlensing experiments found several very-short timescale events that may be due to free-floating or wide-orbit planets
- Implies that FFPs are common: 7^{+7}_{-5} FFPs/star (from 1 M_{\oplus} to 13 M_{Jup})
- Could they be planetary-mass primordial black holes?

Planetary-mass PBHs

2019PhRvD..99h3503N 2019/04 cited: 251 Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events Niikura, Hiroko; Takada, Masahiro; Yokoyama, Shuichiro and 2 more

High-cadence observations of the LMC

- after the pandemic, we initiated high-cadence observations of the LMC (5 fields) and SMC (4 fields), in total 35 million stars
- cadence of 15-20 min
- observations started in the 2022/2023 season and are planned for two observing seasons (until mid-2024)
- total exposure:
 - $E = 4 \times 10^7$ stars*year

Preliminary results from the 2022/23 season

No short-timescale microlensing events in the high-cadence data!

Magnitude

Mróz P. et al. (in prep.)

Mróz P. et al. (in prep.)

10⁰ MACHO EROS OGLE-III Finite-source EROS effects are $f = \Omega_{PBH}/\Omega_{DM}$ HSC important! et al. (in prep.) OGLE-III + OGLE-IV 10-2 **OGLE-IV** high-Mróz P. cadence fields 10⁻³ 10⁻¹² 10^{-9} 10^{-6} 10^{-3} 10⁰ 10³ $M(M_{\odot})$

Summary

The sensitivity to lowmass PBHs would not significantly improve even if we observed fainter (smaller) sources (I < 24 mag).

Primordial black holes

Black holes may have formed in the early Universe by the collapse of density perturbations.

Phase transitions in the primordial quark-gluon plasma lead to different PBH masses: W^{\pm}/Z^{0} decoupling: ~10⁻⁶ M_o quark-hadron transitions: 1, 30 M_o e⁺e⁻ annihilation: ~10⁶ M_o