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Black holes as dark matter
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Niikura et al. 2019
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Microlensing experiments have 
ruled out compact objects 
(primordial black holes, MACHOs, 
etc) in the mass range 10-10 – 
10 M⊙ as a dominant component of 
dark matter
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Black holes as dark matter

Microlensing experiments have 
ruled out compact objects 
(primordial black holes, MACHOs, 
etc) in the mass range 10-10 – 
10 M⊙ as a dominant component of 
dark matter

tE = 2 hr   for M = 10-6 M⊙

Tisserand et al. 2007
Wyrzykowski et al. 2011
Niikura et al. 2019
Blaineau et al. 2022



OGLE: Optical Gravitational Lensing Experiment

• in operation since 1992
• since 2010 as OGLE-IV (Udalski et al. 

2015)
• over 20,000 microlensing detections
• over 100 exoplanets discovered

Warsaw 1.3-m
@ Las Campanas, 

Chile

Milky Way



OGLE observations of the LMC

These fields were 
observed for 20 years.

Δt (yr) Area 
(deg2)

# stars 
(million)

OGLE-III 
&

OGLE-IV
20 42 41

OGLE-IV 
only 11 280 34

Mróz P. et al. (2024)



Searches for microlensing events
tE = 42 ± 3 d tE = 32 ± 1 d

tE = 64 ± 6 d tE = 8 ± 1 d

• 75 million objects in the OGLE 
database

• 500-1100 epochs per each light 
curve

• detected 16 short-timescale events
(tE < 200 days)

• lenses located in the LMC itself and 
Milky Way disk
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Searches for microlensing events

• 75 million objects in the OGLE 
database

• 500-1100 epochs per each light 
curve

• detected 16 short-timescale events
(tE < 200 days)

• lenses located in the LMC itself and 
Milky Way disk
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Expected number of events
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Limits on the PBH abundance
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Assuming a monochromatic 
PBH mass function:
f < 1.1%    for M = 10 M⊙

f < 2.7%    for M = 100 M⊙

f < 9.7%    for M = 1000 M⊙

(95% confidence limits)



Planetary-mass PBHs

brown dwarfs
and stars

planets

OGLE events
(Mróz+2017)

KMTNet events
(Gould+2022)

MOA events
Sumi+2023

• Microlensing experiments found several very-short timescale events 
that may be due to free-floating or wide-orbit planets

• Implies that FFPs are common: 7+7
-5 FFPs/star (from 1 M⨁ to 13 MJup)

• Could they be planetary-mass primordial black holes?



Planetary-mass PBHs



High-cadence observations of the LMC

• after the pandemic, we initiated 
high-cadence observations of 
the LMC (5 fields) and SMC (4 
fields), in total 35 million stars

• cadence of 15-20 min

• observations started in the 
2022/2023 season and are 
planned for two observing 
seasons (until mid-2024)

• total exposure:
E = 4×107 stars*yearMróz P. et al. (in prep.)



Preliminary results from the 2022/23 season

No short-timescale 
microlensing events 
in the high-cadence data!

Mróz P. et al. (in prep.)



Planetary-mass PBHs: preliminary limits

Mróz P. et al. (in prep.)
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Mróz P. et al. (in prep.)



Planetary-mass PBHs: preliminary limits
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Planetary-mass PBHs: preliminary limits
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Finite-source 
effects are 
important!

OGLE-IV high-
cadence fields



Summary



Planetary-mass PBHs: preliminary limits
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The sensitivity to low-
mass PBHs would not 
significantly improve 
even if we observed 
fainter (smaller) 
sources (I < 24 mag).



Primordial black holes
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Black holes may have formed in 
the early Universe by the collapse 
of density perturbations.

Phase transitions in the primordial 
quark-gluon plasma lead to 
different PBH masses:
W±/Z0 decoupling: ~10-6 M⊙

quark-hadron transitions: 1, 30 M⊙

e+e- annihilation: ~106 M⊙
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