

Is it possible to detect effects of wave optics in gravitational lensing?

¹Arthur Câmara Mesquita ^{2,1}Martin Makler

 ¹ Centro Brasileiro de Pesquisas Físicas Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ. CEP: 22290-180, Brasil
² ICAS, ICIFI, Universidad Nacional de San Martín, Argentina <u>arthurcamara@cbpf.br; martin@cbpf.br</u>

Motivation

- Context
- Wave optics produces a frequency dependent magnification: no magnification for high wavelengths and oscillations for smaller ones.
- Limiting factor to constrain low-mass PBH abundance from microlensing light-curves (e.g. Niikura et al, 2018)
- Femtolensing: PBH would generate wiggles in GRB spectra (Gould, 1992). Strong constraints on low-mass PBH (Barnacka et al, 2012), finite source size kills the effect, so that limit does not apply (Katz et al, 2018)
- Objectives
- Establish detectability conditions to have a clear pattern imprinted by the effects of waves in the spectra of astrophysical objects.
- > We explored ranges of lens masses, source types, and relative distances where we *could detect these* effects in the spectrum of different sources across different scales of the electromagnetic spectrum.

Wave Effects

To account for wave optics, we need to solve the Maxwell's equations in curved spacetime with a perturbation in the potential. For point-like lens and source, the magnification is given by (Schneider et al, 1999):

$$\mu_{ond}^{inf}(w,u) = \frac{\pi w}{1 - e^{\pi w}} \left| {}_{1}F_1\left(\frac{iw}{2}, 1; \frac{iwu^2}{2}\right) \right|^2 \quad \text{(Wave Optics)}$$

 $_1F_1$ It is a confluent hypergeometric function.

Where:

- Dimensionless frequency: $w = 4\pi (1 + z_L) \frac{r_{sch}(M)}{\lambda}$ (2)
- *u*: impact parameter in units of Einstein radius
- $\omega = 2\pi/\lambda;$
- $r_{sch}(M)$: Schwarzschild radius of the lens;
- *M*: lens mass;
- λ: wavelength;
- z_L : lens redshift.
- At high-frequency limits ($w \gg 1$) (Matsunaga, N; Yamamoto, K, 2006)

$$\mu_{int}^{inf}(w,u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}} + \frac{2}{u\sqrt{u^2 + 4}}\sin\{wf(u)\}$$

(Point source term + interference term)

where
$$f(u) = \left(\frac{1}{2}u\sqrt{u^2 + 4} + ln\left(\frac{\sqrt{u^2 + 4} + u}{u - \sqrt{u^2 + 4}}\right)\right).$$

• $\lambda \gg r_{Sch}(M)$ (that is, $w \ll 1$) $\Longrightarrow \mu \to 1$

Wavelensing Effects on the Spectrum of Astrophysical Sources

- > Oscillations will Impact the spectrum of sources \rightarrow wave pattern \rightarrow "WAVELENSING"
- We can explore the influence of lensing on the spectrum for different mass scales of the lens that are sensitive to different wavelengths.

- Effects of lensing on the spectrum (wavelensing): $f_I(\lambda) = \mu(\lambda) \times f_S(\lambda)$
- $f_S(\lambda)$: spectrum of a source.
- $f_I(\lambda)$: processed spectrum (spectrum of the image).
- Define "detectability conditions" so that the wave pattern can be easily identified in the spectra

Figure: Spectrum processed due to wavelensing.

Detectability Conditions

1. <u>Condition on the minimum amplitude:</u>

$$\frac{\Delta \mu}{\mu} = \frac{(\mu_{peak} - \mu_{valley})}{\mu_{mean}} > 0.1$$

- > This condition establishes that $u < u_{\mu}$. Where u_{μ} corresponds to the equality above.
- 2. <u>Condition for being in the oscillatory regime:</u>

$$\lambda_{typical} < \lambda_{peak}$$

> This condition establishes that $u > u_{peak}(\lambda_{typical}, M)$.

3. Condition due to resolution:

- We need the oscillation to occur within a wavelength range larger than the spectrograph resolution $\delta\lambda$. In spectroscopy, it is common to define resolution in terms of $R = \lambda/\delta\lambda$.
- > This condition establishes that $u < u_R(R, \lambda, M)$.

Detectability Conditions

4. Condition for the existence of oscillation in the observed spectrum:

- We need at least one complete oscillation within the wavelength range (λ) of the spectrograph.
- > This condition establishes that $u > u_{\Delta\lambda}(\Delta\lambda, M)$, where $\Delta\lambda = \lambda_{max} \lambda_{min}$.
- These conditions were obtained in terms of 'u' as it gives us an idea of the probability of the event occurring.
- We consider some specific instruments in each spectral range as representative of the state-of-the-art in terms of coverage and resolution.

Instrument	Band	$\lambda(\text{\AA})$ range	Spectral resolution
SETI	Radio	$[3 - 30] \times 10^8$	5×10^{8}
ALMA	Submm	$[3 - 35] \times 10^{6}$	3×10^{7}
VLT (CRIRES)	IR	$[1 - 5] \times 10^4$	1×10^{5}
VLT (FLAMES)	Optical	3700 - 9500	4×10^{4}
HST (GHRS)	UV	1150 - 3200	1×10^{5}
Chandra X-Ray (LETG)	X-ray	50 - 160	1×10^{3}
INTEGRAL (SPI)	γ -ray	$10^{-3} - 0.1$	5×10^{2}

Detectability Conditions

- Allowed regions in the $u \times M$ plane for each band of the electromagnetic spectrum.
- Solid lines obtained under point source detectability conditions;
- > The pink area indicates the wavelensing detection region.
- > Each spectral range is sensitive to different lens masses.

Finite Source Effect

• To model the finite source effect, we assume that the source is a disk with constant surface brightness. In this case, the magnification is given by (Schneider et al, 1999):

$$\mu(u,r,w) = \frac{1}{\pi r^2} \int d^2 \vec{y} \,\mu(w,|u-\vec{y}|) \qquad (4)$$

•
$$r = \frac{r_S}{D_S \theta_E(M, D_L, D_S)} = r_S \left(\frac{c^2 D_L}{4GMD_{LS} D_S}\right)^2$$

- r_S : radius of the source in physical distance units;
- *D_L*: observer-lens angular diameter distance
- *D_S*: observer-source angular diameter distance
- \vec{y} corresponds to a generic point in the source disk.
- The finite source effect destroys oscillations at high frequencies and is stronger as the radius becomes larger relative to the impact parameter.
- \succ r < u: oscillations are preserved in a given frequency range.
- ➤ $r \ge u$ finite source effect dominates.
- Considering only r < u, we are able to obtain a new analytical result in the small-radius approximation.

$$\mu_{int}^{r^{2}}(u,r,w) = \frac{u^{2}+2}{u\sqrt{u^{2}+4}} + \frac{2}{u\sqrt{u^{2}+4}}\sin\{wf(u)\} + r^{2}\left(\frac{4(u^{2}+1)}{u^{3}(u^{2}+4)^{5/2}} + \frac{\beta(u,w)}{(u^{2}+4)^{5/2}}\right) \sin\{wf(u)\} + \frac{\alpha(u,w)}{(u^{2}+4)^{2}}\cos\{wf(u)\}\right)$$
(5)

$$u = 0.5 - r = 0.01$$

Detectability Conditions (with Finite Source Effect)

1'. Condition on the minimum amplitude (including finite source effect)

We will use the approximate magnification for small source size to determine the fractional difference, similar to the first condition.

$$\frac{\Delta \mu_{int}^{r^2}}{\mu} = \frac{(\mu_{max} - \mu_{min})}{\mu_{mean}} > 0.1$$

► This condition establishes that $u < u_{finite}(\lambda_{min}, M, r_S, D_L, D_S)$.

We consider typical sizes of sources at distances in two broad distance ranges.

Detectability Conditions (Finite Source Effect)

- Allowed regions in the $u \times M$ plane for each band of the electromagnetic spectrum.
- Solid lines obtained under point source conditions;
- Dashed lines obtained under finite source conditions.

General Conclusions

□ We conclude that it might be possible to detect the wavelensing pattern in the spectrum for astrophysical sources within some ranges of D_L , D_S , r_S , M, λ and u.

- For neutron star and white dwarf:
 - > Greater chances to detecte wavelensing in almost every spectrum, except γ -ray for white dwarf.
 - > Neutron star: from γ -ray to radio with $M \sim [10^{-15} 10^3] M_{\odot}$, when $D_L \sim 8$ kpc.
 - > White dwarf: from X-ray to radio with $M \sim [10^{-10} 10^{-1}]M_{\odot}$.
- Main sequence star:
 - > Detectable in the submm and radio, with planetary mass range, $M \sim [10^{-6}, 10^{-3}] M_{\odot}$, when $D_L \sim 8$ kpc.
 - > Possibility of using real point-like lenses, such as free floating planets.
- sGRB and GRB:
 - > Detection of wavelensing with lenses located in the local universe $D_L \sim 8$ kpc, with $M \sim [10^{-13} 10^{-10}] M_{\odot}$.
 - \succ Observations in the X-ray spectrum.
- Supernova:
 - > There is no possibility of detection at any scale of the spectrum.
- Kilonovae:
 - > The beginning of binary merger. \rightarrow greater detection at all wavelengths as it approaches a point source.
 - From γ -ray to radio with $M \sim [10^{-13} 10^3] M_{\odot}$, when $D_S \sim 1.5$ Gpc

- Simulate wavelensed spectra from real unlensed ones an assess the capability of extracting the signal.
- To determine the wavelensing event rate as a function of the characteristics of sources, lenses, and observations:
 - > For known lens populations: seek if effect would be detectable;
 - For unknown populations (e.g. PBH): no observation of the effects may place constraints on the lens abundance
- Developing a strategy to observe the phenomenon.

Thank You!

References

- BARNACKA, A.; GLICENSTEIN, J. F.; MODERSKI, R. New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts. Physical Review D -Particles, Fields, Gravitation and Cosmology, v. 86, n. 4, p. 1–7, 2012. I
- ✤ GOULD, A. Femtolensing of gamma-ray bursters. The Astrophys. J, v. 386, p. L5 L7, February 1992.
- KATZ, A. et al. Femtolensing by dark matter revisited. Journal of Cosmology and Astroparticle Physics, v. 2018, n. 12, 2018.
- NIIKURA, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy, p. 1–43, 2018.
- MATSUNAGA, N.; YAMAMOTO, K. The finite source size effect and wave optics in gravitational lensing. Journal of Cosmology and Astroparticle Physics, n. 1, p. 1–24, 2006.
- SCHNEIDER, P.; EHLERS, P.; FALCO, E. E. Gravitational Lenses. New York: Springer-Verlag, 1999.