ensed Systems and Data	Data Analysis	Methods	Results	Conclusion
Gravitatio Rota	nal Microlensi tion Curves in	ng as a Kine five Lensed	ematic Prol Quasars	be:
	_			

Vniver§itat dğValència

Carina Fian

Postdoctoral Researcher Departament d'Astronomia i Astrofísica Universitat de València

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

1 Lensed Systems and Data

4 Results

- Size-Wavelength Relation
- SMBH Masses

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
111				

1 Lensed Systems and Data

3 Methods

4 Results

- Size-Wavelength Relation
- SMBH Masses

wiethous	Results	Conclusions
	1111	

Quadruply Lensed Quasar SDSS J1004+4112

- lensed by galaxy cluster
- 4 bright images
- source redshift: $z_s = 1.734$
- max. image separation: 14".62
- time delay: $\Delta t_{AB} = 44$ days

Credit: ESA, NASA, K. Sharon, E. Ofek

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

Doubly Lensed Quasars

SDSS J1001+5027

- source redshift: $z_s = 1.838$
- image separation: 2".86

GI B A G2

Credit: Rusu et al. 2016

HE 1104-1805

- source redshift: $z_s = 2.319$
- image separation: 3".15

Credit: NASA, ESA, J.A. Muñoz

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
111				

Doubly Lensed Quasars

SDSS J1206+4332

- source redshift: $z_s = 1.789$
- image separation: 2".90

SDSS J1339+1310

- source redshift: $z_s = 2.243$
- image separation: 1".70

Credit: Birrer et al. 2019

Credit: Shalyapin & Goicoechea 2014

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

3 Methods

4 Results

- Size-Wavelength Relation
- SMBH Masses

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

Components - Standard Interpretation

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

Removing Continuum & Normalization

Step 1: fit straight line to the continuum and subtract it

Step 2: define core flux - narrow interval centered at the line peak

Step 3: normalize the continuum-subtracted spectra

Coloulation	A			
Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

- use cores as baseline for no microlensing
 - fit spline to line wings
 - velocity interval:
 500 km s⁻¹
 - velocity range: 3000 - 8000 km s⁻¹

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
Si IV Emission	n Line			

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

- Size-Wavelength Relation
- SMBH Masses

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
Theoretical M	odel			

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

Effect of Extended Sources

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

Size Estimation of Emission Region

- Bayes' theorem: $P(r,p|\Delta m_{obs}) \propto$ $P(\Delta m_{obs}|r,p) P(r,p)$
- source: circular Gaussian
- magnification = convolution of source profile and magnification map

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
Size-Wavelength Relation				

4 Results

- Size-Wavelength Relation
- SMBH Masses

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
Size-Wavelength Relation				

Initial Findings: 2 Examples

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
Size-Wavelength Relation				

Average Size-Wavelength Trend

• blue points:

average sizes of the emission regions vs. wavelength

• dashed black line: Keplerian fit; fixed power-law index of 4/3

• dotted red line:

best fitting model; power-law index of ~ 0.9

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
SMBH Masses				

SMBH Masses via Kinematic Responses

$$M_{BH}\sin^2 i = \frac{R \ v^2}{G}$$

Object	Line	wing	MBH SIN-1 (Mo)
(1)	(2)	(3)	(4)
SDSS J1001+5027	C IV	red	$6.6^{+1.0}_{-0.5} \times 10^7$
	CIV	blue	$1.2^{+1.0}_{-0.5} \times 10^{7}$
SDSS 11004 - 4112	CIV	red	$1.0^{+0.8}_{-0.4} \times 10^{7}$
SDSS J1004+4112	S: IV	blue	$0.6^{+0.8}_{-0.3} \times 10^7$
	5110	red	$1.0^{+0.9}_{-0.5} \times 10^7$
UE 1104 1805	C IV	red	$5.8^{+1.9}_{-1.4} imes 10^7$
HE 1104-1805	Si IV	red	$7.1^{+2.1}_{-1.6} \times 10^{7}$
SDSS 11206+4332	CIV	blue	$2.8^{+1.4}_{-0.9} \times 10^7$
3033 31200+4332	CIV	red	$3.2^{+1.5}_{-1.0} imes 10^7$
SDSS 11330+1310	C IV	red	$2.2^{+1.3}_{-0.8} \times 10^{7}$
303331339+1310	Si IV	red	$2.3^{+1.1}_{-0.7} \times 10^{7}$

- MBH SMBH mass
 - i inclination
 - R distance
 - v velocity
- G gravitational constant

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
SMBH Masses				

Virial SMBH Masses

$$M_{BH} = f \frac{R_{1/2} \sigma^2}{G}$$

Object	Line	$R_{1/2}$ (light-days)	$M_{BH} (M_{\odot})$
(1)	(2)	(3)	(4)
SDSS 11001 - 5027	CIV	12 ± 7	$(15 \pm 9) \times 10^{7}$
3D33 11001+3027	Mg II	45 ± 14	$(25\pm9)\times10^7$
SDSS 11004 14112	CIV	2 ± 1	$(3\pm2)\times10^7$
3D33 J1004+4112	Mg II	3 ± 2	$(1\pm1)\times10^7$
HE 1104 1805	CIV	10 ± 6	$(11\pm7)\times10^7$
THE 1104-1805	Mg II	87 ± 37	$(16\pm7)\times10^7$
SDSS 11206 . 4222	CIV	6 ± 4	$(9\pm6)\times10^7$
3D33 J1200+4332	Mg II	28 ± 10	$(12\pm5)\times10^7$
SDEE 11220 - 1210	CIV	5 ± 3	$(11\pm7)\times10^7$
3033 31339+1310	Mg II	32 ± 11	$(8 \pm 3) \times 10^7$

MBH SMBH mass

f virial factor

*R*_{1/2} BLR size

- $\sigma \quad \dots \ {\rm velocity} \ {\rm dispersion}$
- G gravitational constant

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions
				11

3 Methods

4 Results

- Size-Wavelength Relation
- SMBH Masses

Lensed Systems and Data	Data Analysis	Methods Results	Conclusions

Conclusions & Most Important Findings

- (1) unexpected chromatic enhancement within broad-line wings
- (2) we resolved structure of inner, disk-like BLR
- (3) for two systems: kinematic agreement with Keplerian fit
- (4) for remaining systems: slightly flatter trend
- (5) remarkable kinematic coincidence between rotation curves derived from blue and red wings
- (6) SMBH mass estimates via spectral responses
- (7) mean BLR inclination $\sim 37^\circ$

Lensed Systems and Data	Data Analysis	Methods	Results	Conclusions

Thank you for your attention!