

Microlensing Event Modeling for the Roman Galactic Exoplanet Survey (RGES)

RGES Event Modeling Efforts

RGES modeling goals to be achieved by three modeling efforts:

- 1. Microlensing Science Operation System (MSOS) See Etienne Bachelet's talk (3:00pm)
 - Direct Project funded to meet level-1 science requirements
 - Supported by PIT with modeling algorithms, realistic light curve simulations needed (including all higher order effects (microlensing parallax, orbital motion, additional lens masses and sources)
 - Modeling effort is somewhat more complicated than anticipated by the previous science team
- 2. RGES PIT modeling effort
 - Major contributions from Valerio Bozza
 - Needed to attain our main science goals well beyond the level-1 science requirements
 - New code developments are needed, including a different strategy for higher order effects
- 3. MExoFAST = MuLensModel + ExoFAST (Jennifer Yee, Radek Poleski and Jason Eastman)
 - Easy to use, but highly capable code for the astronomy public
 - To enable broad participation in Roman's exoplanet microlensing survey data.
 - Project code will be public, but has no funding to make it easy to use

Level-1 Science Requirements and a Gap

- EML 2.0.1: RST shall be capable of measuring the mass function of exoplanets with masses in the range $1M_{\oplus} < m < 30M_{\text{Jupiter}}$ and orbital semi-major axes ≥ 1 au to better than 15% per decade in mass.
- EML 2.0.2: RST shall be capable of measuring the frequency of bound exoplanets with masses in the range $0.1M_{\oplus} < m < 0.3M_{\oplus}$ to better than 25%.
- Not EML 2.0.3: RST shall be capable of determining the masses of, and distances to, host stars
 Verified! of 40% of the detected planets with a precision of 20% or better.
 - EML 2.0.4: RST shall be capable of measuring the frequency of free floating planetary- mass objects in the Galaxy from Mars to 10 Jupiter masses. If there is $1M_{\oplus}$ free-floating planet per star, measure this frequency to better than 25%.
 - EML 2.0.5: RST shall be capable of estimating η_{\oplus} (the frequency of planets orbiting FGK stars with mass ratio and estimated projected semimajor axis within 20% of the Earth-Sun system) to a precision of 0.2 dex via extrapolation from larger and longer-period planets

No star-planet separation requirements – since they don't affect hardware (much)

2 of 3 Mass-Distance Relations

A 3rd Mass-Distance Relation

lens

- **§** Finite source effect or lens-source proper motion:
 - § Angular Einstein radius $q_F = q_* t_F / t_*$

source

- § q_* = source star angular radius
- § D_1 and D_5 are the lens and source distances
- **§** Lens brightness from high resolution image used in Mass-Luminosity relation
 - § mass-distance relation $\ge D_1$ M_1
- **§** Lens-source relative proper motion is key to lens star identification
- § Independent measurement in every passband
- **§** Seeing limited image don't help

Mass & Distance Measurement Example

MOA-2007-BLG-192L

- HST V_L , I_L measurements
- Keck K_L measurements
- $\pi_{\rm E}$ from light curve and Keck + HST $\mu_{\rm rel, H}$ observations
- $\theta_{\rm E}$ from light curve and Keck + HST $\mu_{\rm rel, H}$ observations

see Sean Terry's talk, Friday 9:15am

Higher Order Light Curve Effects

- & Why We Need Them (w/ examples from Suzuki+16)
- Microlensing Parallax, π_E (always present)
 - Yields lens masses when combined with $\theta_{\rm E}$ (ob06109, mb09266, ob110265) or lens magnitude
 - 1-d $\pi_{\rm E}$ lens masses when combined with $\theta_{\rm E}$ and $\mu_{\rm rel,H}$ (ob05071, ob120950)
 - 1-d $\pi_{\rm E}$ likely to be common for RGES
 - Always present and can effect other parameters like t_E and source magnitude (mb08379)
- Lens orbital motion (always present)
 - Does not affect host star parameters, but could affect mass ratio, q
 - Can interfere with π_E measurements (ob05071, ob06109, mb09266, mb09387, mb10328, mb10477, ob110265 but not compared to no orbital motion in some cases)
 - Sometimes needed to fit the data (ob06109, mb10328)
- Source companion (not always present)
 - xallarap and 2nd magnified star can interfere with π_E measurements (ob07368, mb10328, ob161195)
 - Early lens-flux analysis will reveal excess flux at location of the source, which will limit the total lens+companion magnitude – multiple colors could help separate lens and companion magnitudes
 - Faint companions (white dwarfs, late M-dwarfs, and brown dwarfs) may yield only xallarap signals
- Additional lens masses \rightarrow frequently present, but often not detectable

RGES Requires a New Modeling Strategy

Old Strategy

- Only include higher order effects as needed to fit the data
- High angular resolution follow-up imaging, is a problem for someone else, many years from now

Roman Galactic Exoplanet Survey modeling strategy

- Higher order effects must be included if they influence the uncertainties of other measurable parameters
 - Parallax (π_E) is always present and can influence t_E , orbital motion can influence π_E .
 - Galactic priors can be used to exclude very unlikely π_E and orbital motion parameters.
 - Source companions at separations of < 10 AU can yield xallarap and additional magnified sources
- Roman's high angular resolution imaging will be available for all events, and imageconstrained modeling simplifies the analysis
 - Hints of source companions are available immediately.
 - Relative proper motion, μ_{rel} , measurements available toward the end of the survey and can yield accurate π_E and θ_E measurements

Image Constrained Modeling Makes Analysis Easier

- Use constraints from high angular resolution imaging and Galactic models on the modeling of light curve data.
- Initially, we don't have $\mu_{rel,H}$ measurements, but we can constrain the following:
 - Lens + Source(s) magnitudes. Since there could be unrelated stars blended with the source and lens, we might just use upper limits on the Lens + Source(s) brightness
 - Priors based on Galactic models and orbital distributions for $\pi_{\rm E}$ and orbital motion
 - These allow reasonable uncertainties to be obtained for π_E and orbital motion when the data are not sufficient to measure these parameters.
- When $\mu_{\rm rel,H}$ is measured, the constraints are much stronger
 - Source and lens systems are separated, so that we can constrain the magnitudes independently
 - We also constrain the lens-source magnitude difference, as it may be known more precisely
 - $\mu_{\rm rel,H}$ allows the direction of $\pi_{\rm E}$ to be constrained
 - Which allows 1-d $\pi_{\rm E}$ to be converted to full 2-d $\pi_{\rm E}$ measurements
 - This requires a conversion from *µ*_{rel,H} to *µ*_{rel,G} which depends on the source distance, so *D*_S is included as a fit parameter (with a prior)
- Imaging constraints significantly reduce the range of acceptable models for faster modeling
- Coding is relatively simple.

Mass Measurement Complications

Analysis of 15 Suzuki+16 sample events (out of 29 planets in 28 events):

- OGLE-2005-BLG-071 1-d $\pi_{\rm E}$
- OGLE-2005-BLG-169 OK
- OGLE-2006-BLG-109 triple lens (2 planets) w/ orbital motion 1-d π_E resolved by terrestrial π_E
- MOA-2007-BLG-192 π_E contaminated by color-dependent atmospheric refraction
- MOA-2007-BLG-400 OK
- OGLE-2007-BLG-349 triple lens w/ circumbinary planet favored over 2-planet model by lens flux
- MOA-2008-BLG-379 source magnitude 27σ too bright
- MOA-2009-BLG-266 OK (some improvement of π_E with orbital motion)
- MOA-2009-BLG-319 weak triple lens w/ degenerate circumbinary and 2-planet models
- MOA-2010-BLG-117 binary lens, binary source with π_E measurement
- MOA-2010-BLG-328 π_E + orbit vs xallarap investigated, both are needed along with 2nd lensed source
- OGLE-2011-BLG-0265 degenerate π_E models w/ different masses
- OGLE-2011-BLG-0950 planet stellar binary degeneracy, planet χ^2 is better, but rejected by Keck data
- OGLE-2012-BLG-0563 systematic error in t_* and therefore $\theta_{\rm E}$
- OGLE-2012-BLG-0950 1-d $\pi_{\rm E}$

Failure due to higher order effect not modeled

Systematic photometry error

3L1S or 2L2S model needed

1-d $\pi_{\rm E}$

Model degeneracy with different implied masses

Only 3 out of these 15 events give clear mass measurements with simple and fast modeling

MOA-2008-BLG-379: Source Mag. & t_E Errors

(a)

Bennett+23 with Keck, HST constraints: $I_{source} = 21.56 \pm 0.15$, $K_{source} = 18.87 \pm 0.06$ $t_{E} = 55.8 \pm 5.5$ days

Central $t_{\rm E}$ is 27 σ larger than the Suzuki+14 value.

But, the Suzuki+14 model had π_E° 0. With π_E° 0, we have $t_E = 45.0 \pm 6.2$ days New t_E is 1.7 σ larger than this value Modeling π_E is needed for reliable error bars!

Detection of Systematic Photometry Error

- 3-color Keck (*K*) and HST (*V*, *I*) observations find μ_{rel} to be 0.6 x Fukui+15 μ_{rel} value
- image constrained modeling reveals systematic error in FTS Observations
 - OGLE favors the V, I, K measured $\mu_{\rm rel}$ value
- ρ measurement seems unlikely at $\rho \in 2u_0$
- $M_{\text{host}} = 0.32 + 0.12 M_{\odot}$ now $M_{\text{host}} = 0.81 \pm 0.03 M_{\odot}$

(Bhattacharya+23, Bennett+23 in preparation) talk Friday at 10:00am

FTS Photometry for OGLE-2012-BLG-063

FTS data drives small t_* (or ρ) value (green curve), but fit without FTS data (blue curve) is consistent with the μ_{rel} to values measured by Keck and HST See Aparna Bhattacharya's talk: Friday at 10:00am

MOA-2010-BLG-328: Parallax or Xallarap?

Furusawa+13 found competing solutions:

- microlensing parallax + orbital motion or
- xallarap models

Which is right?

but every event has microlensing parallax

MOA-2010-BLG-328: $\pi_{\rm E}$, orbital motion, xallarap, and 2nd magnified source

See Katie Vandorou's talk, Friday at 9:45am Furusawa+13 model results: parallax in red and xallarap in blue

Probability density 0.5 0.5 20 ö 2 6 0.05 0.1 0.2 0.5 2 4 8 0 R_R (AU) D_L (kpc) $M_h (M_{\odot})$ 1.0 1.0 1.0 0.8 0.8 (^{10.6} (^NN)d P(R_E) 0.4 0.4 0.2-0.2 0.2 0.0 0.0 0.10 0.20 logML (Mo) 0.10 RE (AU) 0.50 2 0.05 1.00 D_i (kpc)

Vandorou+24 results in preparation have 2 peaks, dominated by parallax and xallarap, but both effects are important (along with lens orbital motion and 2nd source magnification

