

# Status of the PRIME Near-Infrared Microlensing Survey : First year

<u>Naoki Koshimoto</u>

(Osaka Univeristy) on behalf of the PRIME collaboration

telescope

#### **PRime-focus Infrared Microlensing Experiment**



The first dedicated NIR microlensing exoplanet survey

- > H-band microlensing survey
  - ✓ Find planets toward the inner bulge
  - ✓ <u>Support Roman</u>
    - Field optimization
    - Concurrent obs.

Off-bulge science :

- > ToO (GW, GRB)
- Transit survey
- RV survey by SAND





## **PRIME-Cam**

- Detector : H4RG-10  $\times$  4  $\rightarrow$  64M pix
- FOV  $: 1.3 \text{ deg}^2$ 
  - Filter : Z, Y, J, H-band+ Narrow-band ➤ Microlensing survey will use H-band.
- Limiting mag : 18.5 mag (H, Vega, integration time 100 s)
- Manufactured in Goddard and shipped to SA on Aug 2022.











Achievement Issue

Oct 2022 - PRIME-Cam installed and first science result (GRB)!









#### Achievement Issue

Oct 2022 - PRIME-Cam installed and first science result (GRB)!

- Chip 2 unavailable because ACADIA (ROIC) was broken during shipping
- Frequent condensation of dewar window
- Too bright thermal BG (leak from uncoated edge of cold window)

| Гhermal | background | @ | 290 | Κ |
|---------|------------|---|-----|---|
|---------|------------|---|-----|---|

| Filter | Before<br>(ADU/s) |  |
|--------|-------------------|--|
| Z      | 1445              |  |
| Y      | 1345              |  |
| J      | 1065              |  |
| Н      | 1609              |  |



Condensation even at humidity ~50%





Achievement Issue

Oct 2022 - PRIME-Cam installed and first science result (GRB)!

- Chip 2 unavailable because ACADIA (ROIC) was broken during shipping

- Frequent condensation of dewar window

- Too bright thermal BG (leak from uncoated edge of cold window)

Feb 2023 - Replace dewar window and flanges and adjust the direction of dry-air

Thermal background @ 290 K

| Filter | Before<br>(ADU/s) | After<br>(ADU/s) |
|--------|-------------------|------------------|
| Z      | 1445              | 233              |
| Y      | 1345              | 270              |
| J      | 1065              | 255              |
| Н      | 1609              | 419              |

Flange to adjust the direction of dry-air





Condensation even at

No condensation even at humidity ~90%





Achievement Issue

- Oct 2022 PRIME-Cam installed and first science result (GRB)!
  - Chip 2 unavailable because ACADIA (ROIC) was broken during shipping
  - Frequent condensation of dewar window
  - Too bright thermal BG (leak from uncoated edge of cold window)
- Feb 2023 Replace dewar window and flanges and adjust the direction of dry-air
  - Chip 1 became unavailable (cable connection issue)



- Test observation toward the bulge started but only with chip3 & 4



cable





Achievement Issue

Oct 2022 - PRIME-Cam installed and first science result (GRB)!

- Chip 2 unavailable because ACADIA (ROIC) was broken during shipping

- Frequent condensation of dewar window

- Too bright thermal BG (leak from uncoated edge of cold window)

Feb 2023 - Replace dewar window and flanges and adjust the direction of dry-air
 - Chip 1 became unavailable (cable connection issue)

- Test observation toward the bulge started but only with chip3 & 4

June-July - Replace ACADIA and cable, and **all four chips became available**!

2023 - Optical alignment → Hartman constant ~0.35"
 → Detector tilt 70" (< tolerance 120")</li>





#### Achievement Issue



- Chip 2 unavailable because ACADIA (ROIC) was broken during shipping

- Frequent condensation of dewar window

- Too bright thermal BG (leak from uncoated edge of cold window)

#### Feb 2023 - Replace dewar window and flanges and adjust the direction of dry-air

- Chip 1 became unavailable (cable connection issue)
- Test observation toward the bulge started but only with chip3 & 4
- June-July Replace ACADIA and cable, and all four chips became available!
  - Optical alignment → Hartman constant ~0.35"
    → Detector tilt 70" (< tolerance 120")</li>

2023

- Bulge survey started with all four chips!
  (Off-bulge: pre-defined all sky grids for ToO reference and ToO like GRBs are observed)
- But we started to have a higher detector temperature issue...

#### GC image with four chips





Achievement Issue



#### Bulge survey has started on July 2023!



-1

0

2

1

H-band, 8.58 sec.

#### PRIME bulge survey field





#### Data processing procedure

- We have been developing data reduction pipeline
- Each field is observed by 12 x 11.44 sec exposures
- Each 11.44 sec exposure consists of 4 non-destructive read-out frames (2.86 sec/frame)



## **Classical non-linearity correction (CNLC)**



→ <u>CNLC worked successfully for good pixels</u>

#### CNLC doesn't work for hot/warm pixels



- The number of hot/warm pixels were negligible when observing with chip3 & 4
- Hot/warm pixels increased (~40% for chip4) due to higher detector temperature (~108 K → ~117 K) since the recovery of chips 1 & 2.

#### Non-linearity in hot/warm pixel

Long exposure with stable light source



#### → Dark seems to have a different non-linear behavior than normal signal...

#### New NLC method developed (Hamada+)

- New method for NLC taking into account high dark current developed (Hamada+ in prep.)



 $\rightarrow$  might be also useful for Roman's warm pixels??

# DIA worked!



#### Data processing procedure

- We have been developing data reduction pipeline
- Each field is observed by 12 x 11.44 sec exposures
- Each <u>11.44 sec exposure consists of 4 non-destructive read-out frames</u> (2.86 sec/frame)



#### Summary

- **PRIME bulge survey has started** on July 25
- New method for non-linearity correction was developed
- Data reduction pipeline is mostly developed, and light curve will be produced soon