Analyzing Lens Parameter Distribution: A case study of the Gaia18ajz event

Kornel Howil, Łukasz Wyrzykowski

26th International Microlensing Conference Lawrence Livermore National Laboratory, Livermore, California, USA January 31 - February 2, 2024

Alert date	14 February 2018
Galactic coordinates	23.20506, 0.92576
Baseline Magnitude (G)	~ 19.25 mag
Peak Magnitude (G)	~ 17.64 mag

Available Photometric Data

^B Data from that observatory has been processed and calibrated using BHTOM

Source star

X-SHOOTER Spectra, 25.03.2018, 08.08.2018

$D_S = 11.5 \pm 2.9 \,\mathrm{kpc}$

$A_V = 8.0 \pm 0.1 \,\mathrm{mag}$

Model of the microlensing event

(Poleski & Yee, 2019)

Model of the microlensing event Two possible solutions

Parallax models:

GO+: Gaia + OGLE, u0 > 0 GO-: Gaia + OGLE, u0 < 0

Standard model:

GO0: Gaia+ OGLE

Model of the microlensing event Two possible solutions

Model of the microlensing event Two possible solutions

What now?

$$M_L = \frac{\theta_E}{\kappa \pi_E} = \frac{t_E \mu_{LS}}{\kappa \pi_E}$$

$$D_L = \left(\theta_E \pi_E + \frac{1}{D_S}\right)^{-1}$$

- To find the mass we have to find the θ_E
- We can't find the θ_E without the astrometric data

Solution 1: Simulation of the astrometry

Astrometry

Gaia astrometric parameters for the source star in Gaia18ajz.

Parameter	GDR2	GDR3
arpi [mas] μ_{lpha} [mas yr ⁻¹] μ_{δ} [mas yr ⁻¹] RUWE	3.24 ± 0.59 -7.76 ± 1.36 -4.27 ± 1.46 1.49	$\begin{array}{c} 1.52 \pm 0.54 \\ -5.37 \pm 0.59 \\ -6.69 \pm 0.51 \\ 1.53 \end{array}$

What now?

$$M_L = \frac{\theta_E}{\kappa \pi_E} = \frac{t_E \mu_{LS}}{\kappa \pi_E}$$

$$D_L = \left(\theta_E \pi_E + \frac{1}{D_S}\right)^{-1}$$

- To find the mass we have to find the θ_E
- We can't find the θ_E without the astrometric data

Solution 1: Simulation of the astrometry (but not in this case 🥪)

What now?

$$M_L = \frac{\theta_E}{\kappa \pi_E} = \frac{t_E \mu_{LS}}{\kappa \pi_E}$$

$$D_L = \left(\theta_E \pi_E + \frac{1}{D_S}\right)^{-1}$$

- To find the mass we have to find the θ_E
- We can't find the θ_E without the astrometric data

Solution 1: Simulation of the astrometry (but not in this case Θ)

Solution 2: DarkLensCode!

MCMC samples + Set of priors

Lens mass and distance + dark lens probability

Previously used in:

Kruszyńska et al. (2024, in review), Maskoliūnas et al. (2023, in review), Kaczmarek et al. (2022), Kruszyńska et al. (2022), Mróz, Wyrzykowski, (2021), Wyrzykowski, (2020), Wyrzykowski, (2016)

DLC: Our assumptions

- Distance: $D_S = 11.5 \pm 2.9 \,\mathrm{kpc}$
- Extinction: $A_G \in [0.0; 8.0] \text{ mag}$
- Proper motion of the source:

$$\mu_{lpha*} = -5.37 \,\mathrm{mas/yr}$$

 $\mu_{\delta} = -6.69 \,\mathrm{mas/yr}$

(From Gaia DR3)

• Mass function: (Kroupa, 2001), (Mróz et al. 2021)

DLC: Results

Results for GO- model. Mass function: (Kroupa, 2001)

DLC: Results

Parameter	Dark remnant	Star
$M_L [M_\odot]$	$12.1^{+14.8}_{-5.4}$	$1.16\substack{+0.36\\-0.30}$
$D_L \; [{ m kpc}]$	$1.18\substack{+0.82 \\ -0.62}$	$8.7^{+1.2}_{-1.0}$
$ heta_E [{ m mas}]$	$9.0\substack{+10.9\\-3.93}$	$0.89\substack{+0.23\\-0.21}$
Dark lens probability	99.5% - 100.0%	5.0% - 98.0%
Solution probability	30%	70%

For GO- Model

Parameter	Dark remnant	Star
$M_L [M_\odot]$	$5.4^{+7.6}_{-2.6}$	$0.48^{+0.21}_{-0.15}$
$D_L \; [{ m kpc}]$	$1.03\substack{+0.77 \\ -0.59}$	$8.3^{+1.3}_{-1.2}$
$ heta_E \; [{ m mas}]$	$7.1^{+9.8}_{-3.2}$	$0.64\substack{+0.20 \\ -0.16}$
Dark lens probability	79.6% - 100.0%	0.1% - 32.7%
Solution probability	89%	11%

For GO+ Model

Thank you!

k.howil@student.uw.edu.pl