Peering into the Underworld

Predicting compact remnant microlensing events in a Gaia + GaiaNIR future

David Sweeney

With: Peter Tuthill, Antoine Mérand, Sanjib Sharma, Ryosuke Hirai, Alberto Krone-Martins, Marc-Antoine Martinod

What's in this talk?

- How do you simulate the galactic underworld?
- What does the galactic underworld look like?
- How do you simulate microlensing events?
- What do they look like?
- How do they compare to observations?
- Conclusion

Simulating the galactic underworld Visible Galaxy

- What you need:
 - Formation locations Different galactic shape
 - Changing star formation rate
 - Evolution through time

Simulating the galactic underworld

- What you need:
 - Formation locations
 - Natal kicks
 - Time evolution

Neutron stars get kicks ~300km/s

- **Disrupt binaries**
- Black holes are heavier

Simulating the galactic underworld

- What you need:
 - Formation locations
 - Natal kicks
 - Time evolution

The difference

(arXiv:2210.04241)

Scale height: $334 \pm 8 \rightarrow 1260 \pm 30$ pc

Nearest neutron star/black hole: ~ 19/21 pc

~ 40% of neutron stars have galactic escape velocity Mass loss = $2.1 \times 10^8 M_{\odot} = 0.4\%$ galactic stellar mass

Microlensing simulations

Take a black hole

- Work out on-sky path over 10/32/10,000 years
- Query Gaia catalogue for stars nearby to this path
- Evolve the black hole to find its closest approach
- Calculate microlensing effect for each star
- Repeat for every black hole (~ 10⁸), neutron star (~ 10⁹) and star (~ 10¹¹)

Look at the results!

How many detections do we get?

> 2 magnification BH: 26⁺³/₋₃, NS: 23⁺³/₋₃, Star: 12800⁺⁷⁰⁰/₋₇₀₀ > 1 mas shift
BH: 231⁺⁹₋₉,
NS: 55⁺⁵₋₅,
Star: 3400⁺⁴⁰⁰₋₄₀₀

What does a detection look like?

What does a detection look like?

What does a detection look like?

Events by Einstein time and Microlens parallax

Conclusions

- (arXiv:2210.04241) We simulate the black hole and neutron star population
- It looks significantly different to the visible Galaxy
- We predict black hole microlensing events (Submitted)
- Black holes are distinct in $t_E \pi_E$ space
- Our simulations are a good match to Gaia data

Questions?