Resolving the Low-Mass Host Star for Super-Earth MOA-2007-BLG-192Lb

Sean Terry, JP Beaulieu, DP Bennett, E. Hamdorf, A. Bhattacharya, V. Chaudhry, A. Cole, J. Anderson, E. Bachelet, J. Blackman, IA Bond, N. Koshimoto, JR Lu, C. Ranc, N. Rektsini, K. Sahu, A. Vandorou

Fully resolved scenario

Fully resolved scenario

Image elongation scenario

Bennett et al. 2008 – planet with $q \sim 2x10^{-4}$

- Conclude the host is either a Brown
 Dwarf or star at bottom of Main Sequence
- VLT/NACO imaging consistent with BD or very-low-mass star

MB07192

Bennett et al. 2008 – planet with $q \sim 2x10^{-4}$

- Conclude the host is either a Brown
 Dwarf or star at bottom of Main Sequence
- VLT/NACO imaging consistent with BD or very-low-mass star

Bennett et al. 2008 – planet with $q \sim 2x10^{-4}$

- Conclude the host is either a Brown
 Dwarf or star at bottom of Main Sequence
- VLT/NACO imaging consistent with BD or very-low-mass star

Kubas et al. 2012 revisited with VLT/NACO and excess flux rules out BD solutions

MB07192

Revisiting the System (again)

Revisiting the System (again)

Why revisit again?

- Still a lot of ambiguity, **8+ possible solutions for lens system**
- MB07192 is in Suzuki+2016 statistical study:
 - We measure the **observed mass-ratio (q) function,** but **what is the true planet mass function?**

- Directly **detect the lens** after *n* years
 - Apply high-res imaging constraints on (re-)modeling lightcurve

HST & Keck Campaigns

HST & Keck Campaigns

Obtained several epochs of high resolution imaging:

HST & Keck Campaigns

Obtained several epochs of high resolution imaging:

- HST 2012 [V, I, J, H]
- HST 2014 [V, I, J, H]
- Keck 2018 [K]
- HST 2023 [I]

HST 2014 [I band]

HST 2014 [I band]

HST 2014 [I band] HST 0.35" 1-star residual 2-star residual 66 18 56 28 37 46 Counts

HST 2014 [I band] HST 0.35" ×× 1-star residual 2-star residual 66 18 56 28 37 46 Counts

Which is Lens? Which is Source?

MOA-2007-BLG-192 Clump Red V - I

MOA-2007-BLG-192 14 15 Clump Red 16 17 18 19 20 21 Sour 22 LC Mod 2 з V - I

Generated via Koshimoto+ (2021) Galactic Model + genulens

Generated via Koshimoto+ (2021) Galactic Model + *genulens*

Use $\mu_{\rm rel}$ and lens/source flux to constrain new modeling

Use μ_{rel} and lens/source flux to constrain new modeling

Use $\mu_{\rm rel}$ and lens/source flux to constrain new modeling

Mass ratio (*q*) uncertainty remains large due to poor light curve sampling

Mass-Distance Relation

Mass-Distance Relation

Lens System Physical Parameters

Lens System Physical Parameters

Summary

- High-resolution imaging detect the lens
- Measure precise mass for the host star
 - error on planet mass remains large
- Super-Earth/Sub-Neptune mass planet with larger mass than previously published
- Useful practice for Roman microlensing (RGES)