The public release of RTModel: a platform for the analysis of microlensing events

RTModel

 Real-time microlensing modeling platform, active since 2011 	Year	Events modeled
Data downloaded from ARTEMIS (Dominik et al.) via rsync <u>http://www.artemis-uk.org/</u>	2011	188
 Light curves modeled without human intervention in less than 2 hours on a 24-core (formerly an 8-core) workstation 	2012	172
	2013	129
		94
 Microlensing calculations all performed using 	2015	108
VBBinaryLensing (published as separate spin-off in 2016).	2016	130
	2017	81
Results posted on a webpage and publicly available. <u>http://www.fisica.unisa.it/GravitationAstrophysics/RTModel.htm</u>	2018	140
	2019	65
 More than a thousand events modeled in real-time. Several hundreds modeled off-line. 	2020	12
	2021	15
	2022	12
		9
	Total	1155

VBBinaryLensing

- VBBinaryLensing (VB 2010; VB et al. 2018; VB et al. 2021)
 - Microlensing computation by contour integration
 - Public code (<u>https://github.com/valboz/VBBinaryLensing</u>)
 - Complete documentation of all functions

T Files VB	VBBinaryLensing / docs / readme.md		
° master → + Q	valboz Update readme.md	e610e0c - 5 months ago 🛛 History	
Q. Go to file t			
VBBinaryLensing	Preview Code Blame 61 lines (37 loc) · 2.09 KB Code 55% faster with GitHub Copilot	Raw 🗗 生 🖉 🔸 🗮	
盲 docs			
AccuracyControl.md	Documentation @		
AdvancedControl.md			
BinaryLenses.md	In this document we will describe all use cases of the VBBinaryLensing library and provide rea	idy-to-use examples that you can copy/paste to	
BinarySources.md	your code.		
CriticalCurvesAndCaustics.md	Quick start 🖉		
LightCurves.md			
🗋 LimbDarkening.md	In a typical C++ code, you will include the VBBinaryLensingLibrary.h in your project.		
DrbitalMotion.md	An instance to the VBBinaryLensing class should be declared in your program. The VBBinaryLensing class contains all the properties and		
D Parallax.md	methods that the user needs to call for any microlensing computations. Here is a basic start u	ıp example:	
SingleLenses.md	<pre>#include <stdio.h></stdio.h></pre>	C.	
🗅 readme.md	<pre>#include "VBBinaryLensingLibrary.h"</pre>		
🗅 reviews.md	int main()		

RTModel 2.0

- RTModel is being entirely revised and updated to become a public code <u>https://github.com/valboz/RTModel</u>
- Paper explaining all algorithms soon to be submitted.
- RTModel: master module (Python) managing the flow and calling all submodules.
- **5 submodules** (C++) interacting via ASCII files.
- Reader: pre-processes the photometry.
- InitCond: sets initial conditions for fitting.
- LevMar: execute the fit for a given model from a given initial condition.
- ModelSelector: select best models for a given category.
- Finalizer: compares models of different categories and assesses event class.

Data pre-processing by Reader

Error bar re-normalization

- Actual scatter of each data set is estimated by summing square residuals from local linear fitting.
- The "chi square" thus obtained is used to re-normalize error bars.

+

Outliers

 If linear fits from preceding and following points agree but the point is way off these predictions, the point is removed as outlier.

Data pre-processing by Reader

Significance

 A "significance" weight is assigned to each data point based on distance and residuals from neighbors.

Re-binning

 Low-significance points are replaced by weighted means with their neighbors.

Customization

- User has full control on all pre-processing steps:
 - ✓ renormalization of the error bars
 - ✓ time-correlation threshold
 - outliers threshold
 - ✓ re-binning level
 - ✓ off-season points usage...

InitCond: template matching

- Library of 113 template light curves covering all possible caustic crossings and grazings (see Mao & Di Stefano 1995; Liebig, D'Ago, VB, Dominik 2015).
- For each template we have a **record of peaks** positions.
- By matching the peaks in the template to the observed peaks, we fix (t₀,t_E).
- (s,q,u_0,α,ρ) are taken from the template.

We run a fit from each seed initial condition.

Initial conditions by InitCond

SPLINE approximation

 Each dataset is approximated by a SPLINE until the maximum residual is less than 5σ.

Initial conditions by InitCond

Candidate "peaks" identification

- In each concave section, we find a peak
- If there is no peak, we take the point with the maximal deviation from the base of the concave section

Initial conditions by InitCond

Selection of "peaks"

- Peaks in different datasets are cross-matched. Duplicates are removed.
- A minimum of two most prominent peaks are selected.
- If only one peak is present, use maximal asymmetry as second peak.

InitCond: template matching

- Library of 113 template light curves covering all possible caustic crossings and grazings (see Mao & Di Stefano 1995; Liebig, D'Ago, VB, Dominik 2015).
- For each template we have a **record of peaks** positions.
- By matching the template peaks to the observed peaks, we derive (t_0, t_E) .
- (s,q,u_0,α,ρ) are taken from the template.

We run a fit from each seed initial condition.

Fitting by LevMar

- Levenberg-Marquardt using numerical derivatives.
- Fit repeated several times with each local minimum filled by a "bumper" repelling the fit in order to broaden exploration.

- Bumpers are shaped according to the covariance ellipsoid.
- Bumpers are broadened each time the fits fall within them.

ModelSelector: selection within a category

- Uncertainty estimated from Fisher ^L matrix inversion on each model.
- Models with uncertainty ellipsoid overlapping with a better model are discarded.

- Independent models are **retained if** $\Delta \chi^2 < 3\sigma_{\chi}$, where the standard deviation of the χ^2 distribution is $\sigma_{\chi} = \sqrt{2n} \rightarrow 89$ for n=4000
- Note that for all these calculations **error bars are re-normalized** so as to have $\chi^2 = d.o.f. \cong n$ on the best model in the category.
- Models passing this selection are given in output as degenerate models.

Finalizer: Event classification

Nested models

- Nested models are those included in a higher dimensional one
- Wilks' theorem: evidence for an alternative model adding *m* parameters vs null hypothesis is tracked by χ² distribution with *m* degrees of freedom.
- Only alternative models improving by $\Delta \chi^2 > T_m$ with respect to any of their nested models are **retained**.
- The threshold T_m corresponds to a 5σ evidence according to the χ² distribution with m degrees of freedom

Unnested models

- We **retain** unnested models following **the softer criterium** $\Delta \chi^2 < 3\sigma_{\chi}$.
- If models of different categories pass this criterium, they are given in output as degenerate models.

m	T _m	Example
2	40	Parallax models
3	43.5	Circular orbital motion
4	46.5	Binary vs PSPL
5	49.2	Binary w par vs FSPL
6	51.9	Binary w par vs PSPL

Conclusions

- RTModel will soon be public:
- 5 C++ modules and a Python master module.
- Broad possibility for customization of all parameters.
- Scriptable for large-scale analysis.
- Fast automatic modeling and classification of microlensing events with no human intervention.
- List of all degenerate models in output with parameters and uncertainties.

Future directions

- Inclusion of astrometry/interferometry.
- Extension to 4 bodies (1 source 3 lenses/ 2 sources 2 lenses) (see Vito Saggese's talk)