

Università degli Studi di Napoli FEDERICO II

università Degli studi Di salerno

Microlensing Conference 2024

A NEW CODE FOR MULTIPLE MICROLENSING EVENTS

Speaker: Vito Saggese, Ph.D. Student

PLANETS IN MULTIPLE SYSTEMS

TRIPLE LENS SYSTEM

OGLE-2019-BLG-0468Lb,c

(C. Han et al. 2022)

TRIPLE LENS SYSTEM

OGLE-2019-BLG-0468Lb,c (C. Han et al. 2022)

- Microlensing magnification can be calculated by:
 - Inverse-ray-shooting (Wambsganns 1992, 1997; Bennett & Rhie 1996; Bennett 2010; Dong et al. 2009)
 - Contour integration (Schramm & Kayser, 1987; Dominik 1995; Gould & Gaucherel 1997; Dominik 1998)

- Microlensing magnification can be calculated by:
 - Inverse-ray-shooting (Wambsganns 1992, 1997; Bennett & Rhie 1996; Bennett 2010; Dong et al. 2009)
 - Contour integration (Schramm & Kayser, 1987; Dominik 1995; Gould & Gaucherel 1997; Dominik 1998)

LENS EQUATION

- Microlensing magnification can be calculated by:
 - Inverse-ray-shooting (Wambsganns 1992, 1997; Bennett & Rhie 1996; Bennett 2010; Dong et al. 2009)
 - Contour integration (Schramm & Kayser, 1987; Dominik 1995; Gould & Gaucherel 1997; Dominik 1998)

- Microlensing magnification can be calculated by:
 - Inverse-ray-shooting (Wambsganns 1992, 1997; Bennett & Rhie 1996; Bennett 2010; Dong et al. 2009)
 - Contour integration (Schramm & Kayser, 1987; Dominik 1995; Gould & Gaucherel 1997; Dominik 1998)

VBBinaryLensing

- Computation by contour integration
- Public code
- Written in C++
- Importable in Python
- Used by most modelling platforms:
 - RTModel
 (http://www.fisica.unisa.it/GravitationAstrophysics/RTModel.htm)
 - pyLIMA (https://github.com/ebachelet/pyLIMA, Bachelet et al. 2018)
 - MulensModel (https://github.com/ebachelet/pyLIMA, Bachelet et al. 2018)
 - muLAn (https://github.com/muLAn-project/muLAn, Cassan & Ranc 2017)

https://github.com/valboz/VBBinaryLensing

MULTIPLE LESES

• Lens equation:

$$\zeta = z - \sum_{i} \frac{m_i}{\bar{z} - \bar{a}_i}$$

• Associated polynomial p(z) (degree $n^2 + 1$):

$$(\zeta - z) \prod_{i} \{ (\bar{\zeta} - \bar{a}_{i}) \prod_{j} (z - a_{j}) + \sum_{j} [m_{j} \prod_{k \neq j} (z - a_{k})] \} + [\prod_{j} (z - a_{j})] \sum_{i} [m_{i} (\prod_{p \neq i} \{ (\bar{\zeta} - \bar{a}_{i}) \prod_{j} (z - a_{j}) + \sum_{j} [m_{j} \prod_{k \neq j} (z - a_{k})] \})] = 0$$

• Image theorem (Rhie 2001, Khavinson 2004):

Minimum number of images = *n*+1 Maximum number of images = 5n-5

Using **Newton's method**, starting from an initial guess, we can iteratively find a root of a polynomial p(z).

To find the next roots the polynomial is divided, this introduces numerical noise!

From VBBinaryLensing to VBMicroLensing

3 different options for mutiple lenses will be made public:

SINGLEPOLY

Classical $n^2 + 1$ order polynomial

Accuracy loss for multiple systems

Impractical for high n

All real images are found

Spourious images, useful to check for nearby folds

Well-defined computational time

NUMERICAL ACCURACY

MULTIPOLY

- The roots with greater accuracy are the first ones found: the images located in proximity of the lens in the center of the reference frame.
- The other roots of the polynomial can be found changing the reference system.

MULTIPOLY

Accurate roots

All real images are certainly found

Spourious images, useful to check for nearby folds

Longer Computational time

NOPOLY

NEWTON-LIKE METHOD:

Lens equation
$$\zeta = z - \sum_i \frac{m_i}{\bar{z} - \bar{a}_i}$$

• If we are close enough to a root z_0 , we can write $z_0 = z + \epsilon$ and expand to first order in ϵ .

• Let us define
$$L(z, \overline{z}) = \overline{\zeta} + \sum_i \frac{m_i}{z - a_i} - \overline{z}$$

- We then have $0 = L(z_0, \bar{z}_0) = L(z, \bar{z}) - \epsilon \sum_i \frac{m_i}{(z - a_i)^2} - \bar{\epsilon}$ • Coupling with the conjugate equation, we find $\epsilon = J^{-1} \left[\bar{L} - L \sum_i \frac{m_i}{(\bar{z} - \bar{a}_i)^2} \right]$
- Images can be found iteratively with this **Newton-like approach**:

$$z_{k+1} = z_k + \epsilon;$$
 $\epsilon = J^{-1} \left[\overline{L} - L \sum_i \frac{m_i}{(\overline{z} - \overline{a}_i)^2} \right]$

NOPOLY

Very accurate roots

Shorter computational time

Scales linearly for high n

Never sure that all images are found

No Spourious images

NUMERICAL ACCURACY

NUMERICAL ACCURACY

-1.0

-0.5

0.0

0.5

1.0

RUNTIME

RUNTIME

SUMMARY

	SINGLEPOLY	MULTIPOLY	NOPOLY
Accuracy for multi- planet systems	X		
All real images are certainly found			X
Computational time	X	X	\checkmark
Spurious images			X

FUTURE PROSPETS

Project Infrastructure Team of Roman Galactic Exoplanet Survey; The Pipeline will be based on VBBinarylensing and RTModel.

THANK YOU!

QUESTIONS?