ArXiv: 2306.02440 accepted for publication in MNRAS

In Collaboration with Prof. Joe Silk, IAP, Paris, France

26th Microlensing Conference

Lawrence Livermore National Laboratory, Livermore, California, USA (remote) (Jan 31 - Feb 2, 2024)

Himanshu Verma

Ph.D. thesis submitted, Department of Physics, IIT Bombay, India Thesis Supervisor: Prof. Vikram Rentala Research Interest: Gravitational Lensing, Compact Objects, Exoplanets, Data Analysis, Dark Matter

Motivation

Black Hole Images

2022

PC: Event Horizon Telescope Collaboration

Problem Statement

Another lens positioned between us and the shadow

Problem Statement

Another lens positioned between us and the shadow

- What happens to the shape of a black hole shadow when a compact object (gravitational lens) passes in the foreground of the shadow?
- How plausible it is to observe the phenomenon in Sgr A* shadow?

Microlensing BH shadow

Derived Observables

1. Shift in the center

$$\overrightarrow{OC} \equiv \frac{\overrightarrow{OI}_c(\pi) + \overrightarrow{OI}_c(0)}{2}.$$

- 2. Magnification of the size $\langle R_L \rangle = \frac{1}{2\pi} \int_0^{2\pi} |\vec{R}_L(\phi)| d\phi.$
- 3. Asymmetric Shape

$$A = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} (R_L(\phi)^2 - \langle R_L \rangle^2) d\phi}.$$

Shift in the center of the shadow Sgr A*

Size of the shadow

Max Enhancement: **50% of the true size**

Asymmetry in the shadow shape Sgr A*

Detectability of the microlensed shadow of Sgr A*

Estimating the uncertainty in the radius

$\lambda = 1.3 \text{ mm}$					
<i>D</i> (km)	$ heta_{ m res}$ (μ as)	N	# of epochs	σ _a (µas)	% error
10,700 (Earth)	25.06	1.9	1	17.98	73.8
300,000 (Earth-Moon)	0.89	54.5	1	0.121	0.50
1,500,000 (Earth-L ₂)	0.18	272.4	1	0.011	0.04
	$\lambda =$	0.5 mm			
10,700 (Earth)	9.64	5.1	1	4.288	17.61
300,000 (Earth-Moon)	0.34	141.7	1	0.029	0.12
1,500,000 (Earth-L ₂)	0.07	708.3	1	0.003	0.01

Event rate due to stellar components of Milky Way

 $\Gamma \approx 1.4 \times 10^{-3} \text{ yr}^{-1} \frac{v}{100 \text{ km/s}} \left(\frac{D_s}{8.2 \text{ kpc}}\right)^{3/2} \sqrt{\frac{1 \text{ M}_{\odot}}{M} \frac{10^{-3}}{\sigma_a/R}}.$

Potential enhancement in the event rate

- 20,000 black hole cluster within central parsec due to *dynamical friction*

[Miralda-Escude & Gould 2000]

 Observational Hint: X-ray density cusp

[Hailey et al. 2018]

- 1. M87?
- 2. Other shadows?

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

Thank You!

Backup Slides (EHT)

Einstein Angle = 7.8 micro-arcsec

M = 1 Solar Mass, r = 0.5 pc

$$\rho(r) = \frac{5}{16\pi} \frac{N_{\rm bh} M}{r_0^3} \left(\frac{r}{r_0}\right)^{-7/4},$$

$$\nu(r) = 68.5 \text{ km/s} \sqrt{\frac{1\text{pc}}{r}}.$$

$$\Gamma_{\rm bhc} \approx 0.3 \text{ yr}^{-1} \frac{N_{\rm bh}}{20,000} \left(\frac{1 \text{ pc}}{r_0}\right)^3 \left(\frac{D_s}{8.2 \text{ kpc}}\right)^{3/2} \sqrt{\frac{7 \text{ M}_{\odot}}{M} \frac{10^{-3}}{\sigma_a/R}}.$$