

Performance Testing the MultiNest Algorithm in BAGLE's Model Fitter

Abstract

BAGLE (Bayesian Analysis of Gravitational Lensing Events) is a tool for the fitting of gravitational microlensing events, especially those of long duration su events. BAGLE simultaneously treats both photometric and astrometric data fo models, including PSPL (point-source, point-lens), BSPL (binarypoint-source, PSBL (point-source, binary-point-lens), all with or without parallax. We ran pe of run time and accuracy based on the number of live points used to fit simulate MultiNest (a nested-sampling alternative to MCMC). Running these performan to optimize the accuracy and efficiency of BAGLE model fitting. These results w determining the optimal number of live points when introducing BAGLE to a n through a tutorial.

Method

- Model: The main model of focus was Photometry no-Parallax and Photometry no-Parallax. This fitted model uses fake data, which is generated in BAGLE.
 - The Photometry data has 4080 points with observations every 1 day.
 - The Photometry-Astrometry data has the same 4080 Photometry points Astrometry points with observations every 14 days.
- The testing method is done by iterating the fitter through live points in the step sizes of 20 with 3 'trials' of each live points value. Values like time run, used, best fit parameters, and χ^2 value are collected.
- BAGLE outputs a χ^2 value, which then has to be manually reduced with the points used and number of free parameters. This is equation (1).
- While most of the components collected test BAGLE itself, collecting RAM performance based on the strain on the machine.

- With every new iteration and trial, the higher the RAM percentage.
 - Suggesting RAM leakage.
- Photometry-Astrometry uses more RAM than at a faster rate than Photometry.
 - Photometry-Astrometry creates more plots
- Dip of RAM percentage consistently at ~60% RAM, suggesting a built in garbage collector or other programs being run by a different user.
- Future inspection will involve how and why these RAM leaks are happening, and how to slow it down.

Abby Schleigh¹, Natasha Abrams¹, Jessica Lu¹ ¹University of California, Berkeley

	Priors		
modeling and ch as black hole or microlensing point-lens), and rformance tests ed events with ce tests allows us vere used in ew audience	Parameter	Range	40 35 30 [s] 25 15 10 5
	Lens Mass (M _{sun})	(5.0, 15,0)	
	Time of Photometric Peak (t _o ; MJD)	(56990, 57010)	
	Angular distance between PS & PL (mas)	(-0.5, -0.3)	
	RA Lens PM (mas/yr)	(-1, 1)	
	Dec Lens PM (mas/yr)	(-8,-6)	
etry-Astrometry	RA Source PM (mas/yr)	(0, 3)	
	Dec Source PM (mas/yr)	(-2, 1)	400
and sparse, 153 range [20,400] in RAM percentage	Observer distance to lens (pc)	(3000, 5000)	
	Ratio of observer distance to PL vs PS	(0.45, 0.55)	005 time [s]
	Ratio of PS flux vs total	(0.5, 1.1)	
amount of data	PS Photometric Magnitude	(18.9, 19.1)	100
gives context to its	RA of PS at t _o (arcsec)	$(-10^{-3}, 10^{-3})$	
	Dec of PS at t _o (arcsec)	$(-10^{-3}, 10^{-3})$	

Links

QR code has links to BAGLE's GitHub and documentation, along with a link to the Moving Universe Lab website.

The Moving Universe Lab **UC Berkeley**

- Cubic function used for best fit line, as it provides insight into the high run time for lower live points. While almost at a linear relationship for the fitter time on both Photometry and Photometry-Astrometry, there is a period of lower value live points that takes longer before regulating to the linear relationship due to these values being closer to the number of free parameters:
- In Photometry=7
- In Photometry-Astrometry=13 Future inspection will look at if there is a plateau in the fitter run time, and whether this run time is heavily affected by the performance of the machine (seen in the RAM data).

- Exponential function used for best fit line.
- There was a visible plateau of the reduced
- $\tilde{\chi}^2$ value within the range of the iterated live points.
- There is a point that simultaneously optimizes for $\tilde{\chi}^2$ value and time run.

 $n_{data} - n_{param}$

• Future inspection will involve testing other models and cross checking the $\tilde{\chi}^2$ values with time run and RAM.

abbyschleigh@berkeley.edu

